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SN R,(g—£&(qg/lql) is a diffeomorphism) and since Sz, N (L) is dif-
feomorphic to ¥(S;) N R,"and S N R, is a (r — 1) simplex, we conclude
that S5, N I'(L') is a simplex of dimension r — [ = Y1, (dim L; — dim L;)
—1=1—2-—73,.,dim L/. One proves in exactly the same way that
In(S;; N I(L)) = Sz N I'y(L). Noting that I1(v) is a finite set the proof is
finished. §

We are now ready to prove that every p € [I(v) is an essential solution of
OeF,(p). Let pell(v), e > 0,and take 0 < 8 < easin Lemma 3.

For L C L(p) denote I'(L) = I'(L) n S5 . By the definitions and Lemma 3,
the collection {I'(L): L C L(p)} satisfies the following properties: (i) (L) is
a simplex of dimension (I —2) — X5, dim Ly (i) Sz C ULer DL
(i) if L # L', then In 1"(1,) NIn (L) = z;@Gv) BA Q) = U, <L P(L)

For every LCL(p) define /(L) ={geS;:q9x =qy for all xe 2_0
(co L; — wy') and y € F(p)},1.e., J(L) is the set of unit normals to hyperplanes
which support the polyhedron F,.( p) at every point of the face determined by
L. Since L(p) is in a general position, for every L C L(p) dim ¥}, (co L; —
w/) =Y, dimL; and so, dim J(L)=1—2 — Yals. In fact, it is
trivially verified that the collection {J(L): L C L(p)} sat*sﬁes conditions (i)~
(iv) of the last paragraph (with, of course, the symbol I replaced by J} and
so, a standard recursive argument (star with 1-simplices) yields the existence
of a homeomorphism g: S;; — S;; carrying every I'(L) onto J(L).

Noting that 0 ¢ F,(S;), we can define £,: S;; — S;, by £i(p) = {p/ip!l:
p €F(p)). For any p e S;, we have p € I(L(p)) and so, g(p) e J(L( p)) which
implies g(p) x = g(p) y for every x € F(p) and y € F,(p); since 0 € E(p), we
get g(p) x = 0 for all x e F(p). In particular, —g(p) ¢ F,(p) for all p e S
and we can conclude that 7, and g are homotopic; hence deg F, = deg
g # 0, because g is a homeomorphism. Therefore, j is an essential solution.

Q.E.D.
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Z*1 such that F(p) = Y1 vi(co Ly(p) — w;). For every L define I'(L) =
{pe R} LCL(p)), I'(L) = {pe R}: L = L(p)}. In the last paragraph it
has been shown that if p € [i(v), then we can assume L(p) is in general
position,

By a simplex in a sphere SC R*1 we mean a set homeomorphic to a
simplex; if 77C S is a simplex, then Bd 7 and In 7 will denote, respectively,
the boundary and interior of 7 when regarded as a simplex.

LemMA 3. We can assume that the conclusion of Lemma 2 holds and that
Sor every € > 0 there is 0 < 8 < € such that if p € [1(v), then S,; C R} and,
for every L' C I(p), I'(L") N S5 is a simplex of dimension (I —2) — ¥,
dim L, and interior I'y(L') N Sy; .

Proof. 1Tt suffices to prove the lemma with the further conditional L(p) =

L, where L is in general position.

Let L' C L;if L' = L, then the conclusion follows from Lemma | because
(L) CA(L) and A(L) is discrete. Suppose L'C L and let 7= {j:dim
L; <dim L}, r; = dim L; — dim Ly, r = Y., r;. For every 1 <j<m
pick x;jo € Ly’ and for every j € I let L\L;" = {Xjy i Xjr }-

Observe that /(L’) remains unaltered by any changes in the u;’s which let
u; | L, unaltered. For every peA(L’), 1 <j<m and 0 < h <r;, denote
u;(p) = u(x;2(p,j)) and for every je Tand 1 < i < r; define 9;,: 2 — R by
nia(x, ) = 5 if X = x;,, 7ia(x, 5) = 0, otherwise. Define now ¥:A(L) X
[Tjet R —T1jer R = R" by ¥i(p, t) = uso(p) — tsn(P) — ™" ninlxial 2, J))-
Observe that for every (p, t) the map D,;¥(p, t) has full rank. Hence, as in
the proof of Lemma 2, for a > 0 arbitrarily close to 0, D¥%(p) has rank = r
whenever ¥:(p) = 0. By redefining, for je 1, the utility functions to be
u; + S04 Py, we can assume rank DWy(p) = r whenever ¥y(p) = 0 and
so, we have: If p € Il(v) and L = L(p), then ¥\(p) = 0 and, for an open set
VCRY, pel'(L)YNV =¥Y(R, YNV and ¥, | V is a diffeomorphism.
Since I(V) C K, it is clear that the previous conclusion remains true if the
utility functions are slightly perturbed and so we can assume that the con-
clusion of Lemma 2 is satisfied.

Let p e I1(v), L = L(p), and take V" as above. Let S C ¥y(¥) be a sphere
centered at the origin and radius & > 0. For any sufficiently small é > 0,
S5 C V and the function ¥ : S;, — S defined by ¥(p) = (¢/] ¥(p)) ¥(p) is
a diffeomorphism.* We have then that ¥(S;,) N R,” is diffeomorphic to

4 Indeed, it has degree --1; so, it suffices to show it is a local diffeomorphism. Suppose
it is not so for any 8. Then we have p, — p, p» # p, va >0 € R™, {lv, || = 1 such that
N Polpi(pn — P) — z # 0, vi(pn — ) = 0, and

D¥y(pa)on W) DY()pa— B) + ollpn = BID
I D¥ sl P I ¥l
but then, (1/|| D¥(F)v v = z and vz = 0, a contradiction.
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all the adjustments have taken place on the weights »;; preferences, or endow-~
ments, have not been altered. From now on the weights remain fixed and only
preferences will be adjusted.

Let u;, 1 < j < m, be utility functions for =;, 1 <j < m. It is easily seen
that if a sequence of utility functions approximate »; uniformly on compacta.
then the induced preferences approximate 2>; in closed converge. Hence, we
can assume that u; is of class C* and from now on by a perturbation of the
u;’s we always mean a C*® approximation uniform on compacta.

For any 1 <j<m, pe R} and xe Z"" let x(p,j)€ Z"* X R be given
by x(p,J) = (x, Z‘,i: Plwf 4+ wi — px). Let £° = Z' x (0, o0) and for
every L define A(L) C R¥* by A(L) = {pe R** for all j, if x, x’ e L;, then
x(p, ), x'(p,j) € 20 and w(x{ p, /) = ui(x'( p,j))}. Note that if L' C L, then
A(L) CA(L).

Lemma 2. We can assume that for every L, A(L) is a C* manifold of

dimension (1 — 1) — r, where r =3, r;and r; = #L;, — 1.

Proof. Let L; = {Xj .0 X; }.

The set @ = {pe R} x(p,j) e £2° for all j and x € L;} is open. For every
peQ, j, and 0 < h <r; denote u;(p) = ufx;(p, j)) and, for every j and
V< h <5y, define 5;,: 2 — R by ;,(x, §) = 5if x = x;, and 9;,(x, 5} = 0,
otherwise.

Ifr = 0, then /(L) = Q and the lemma is proved. Let [ = {j: r; £ 0} 3¢ @
and define ¥: Q X [Lie; R —TLies R by ¥9%(p, 1) = u p) — un(p) —
({0, 7)), Observe that, for every p, 1€ QO X L R, D,¥(p, t) has
full rank (since 7;,(x;,(p, j)) > 0). Hence for a > 0 arbitrarily close to 0 we
have rank D¥(p) = r whenever ¥i(p) = W(i, p) = 0 (we are here applying
the Transversality Theorem; see, for example, Guillemin and Pollack (8,
p. 68]). By redefining the utility functions for j I to be u; X Y5, ¥y;; we
can assume rank DW¥y(p) = r whenever ¥,(p) = 0. Then A(L) = ¥;}0),
and A(L) is a C* manifold of dimension ==dim @ —r =/—1—r. §

Lemma 2 implies that v satisfies (i) and (i1) in the definition of regular

T

economy. Since I[(w;)C K the collection ¥ ={L:0eF(p)=73,_,
vi(co L; — w/), pell(v)} is finite. If Le ¥, ie., 0eF(p) = Yo, vco
L; — w;) for some p, then A(L) = @, because p e A(L), and, by (4), r =
X::; (#L; — 1) =1[—1; by Lemma 2, r >/ — 1 implies A(L) = @, hence
Le¥ implies r = { — 1 and so, A(L) is a discrete set. Since one has I1{(v) C
UrLez AL) N K, #T1(v) is finite. Also, 0elInt 3., v(co L; — w,") and
r = I — 1 imply that L, are all simplices and that O can be written in z unigue
way in the form 0= ¥ vi(x; — @), x;€c0 L;. In turn, since Z; is a
simplex, x; can be written in a unique way as a convex combination of the
points in Ly; so, if p € [1(») there is a unique 7 such that (p, 7} € W{(»).

For every pe RL} let L(p) be the maximal m-tuple of finite subsets of
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been substituted by an approximating one will be indicated by the locution
“we can assume...”

We can assume that v has a finite support (this is well known; see
Hildenbrand [11]), i.e., supp(¥) = {¢; ,..., ¢,n)- We can also assume that
m =1 and that the ¢; = (=, w,), 1 <j <11, satisfy the following
property: for a compact K C R, such that JI(V) C K for an open neigh-
borhood »= V' Cé&’, one has that for all peK and all 1 <j<7—1,
(>, w;,p) >0and ¢(=;,w;,p) =0if 1 <i<I— 1,1 Infact, by
Theorem 2, there is X such that II(V)C K for some open v € V; denoting
e = (1,..., 1) e R, let ¢ be a constant with pe -+ 1 < ¢ for all pe K; put

= (0, £) and let >=; be represented by the utility function u;(x,s) = s(éx7 +
Sex + 1),if § is sufﬁmently small ¢; = (=, , w,) is as desired.

Denote »({¢;}) = v;.

A subset J C Z-1 will be called a simplex if dim co J = #J — 1;® we write
dim J for dim co J. For an m-tuple of finite sets L = (L ,..., Ly), L; C Z*1,
we say that L is in general position if every L; is a simplex and 3;_; dim L; =
dim co (X, v;L;) = I — 1; L’ C L means L, C L; for all j.

For 1 <j<I—1 let e;e Z'* be the vector: e/ =1, e/ = 0 if i 5 J.
From now on the symbol L will denote m-tuples of finite subsets of Z'-1. We
will consider L satisfying:

(3) for 1 <j<<1—1, L; = {vse;}, where v; is a positive integer. Note
that if p e K, then F,(p) = Xy vi(co L, — w;’) where o, = (wi,..., w}™)
and L = (L, ..., L,,) satisfies (3).

LemMMA 1. For every L satisfying (3) the set 6(L) == {x e R™: 0 e Bdry
Sy as(co Ly — w;)} has (Lebesgue) measure zero.

Proof. H(L) has measure zero if for every (o ,..., a), the set {(og 5.y ag_y)

eRVL: — Z 1 avze; € Bdry ZH ajlco L; — wj)} C R has measure Zzero,
but thts is obvious smce Bdry ZJ ca(co L; — w;) C R has measure zero
and (e oo, 0_y) = - 25 1 o;0;€; is 4 nonsingular linear map. §

There is only a countable number of distinct Z. Hence, by Lemma I, we
can approximate the vector (v, ,..., ¥,,) by a strictly positive one (& ;... )
not belonging to any #(L) (L satisfying (3)). Replace » by a new probability
measure v defined by v'({¢;}) = (/%1 ;) oy for this »' we can assume
1I(+') € K and so, 0 € F,/( p) does then imply 0 € Int F,(p). Hence, from now
on we will assume that v satisfies:

4 for all pe RTY, if 0 e F(p), then 0 < Int E(p).
The previous conclusion finishes the first step of the proof. Note that so far

3 “co” denotes convex hull; of course, when we write co J, we are regarding J as a subset
of RV
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p e de, imply the existence of p € 4° such that 0 e @(p) (via a fixed point
argument: see, for example, Hildenbrand [11, p. 150]), i.e., there is a mea-
surable a:/—Q such that [a < [w and a(f) € (=, (1), p) for ae.
t€ [, hence (p, A o (e, a)~%) is an equilibrium. The boundary condition on @
does also yield the compactness of W(v).

In order to prove the claimed properties of @, let p 49, p —ped,
2, € X(po)s 2 = [2,, 8,(t) € (=1, 0y, pn); if pedo we can let z,— z,
z € [ a, a(t) € Ls({a,(1)}) (we are applying Fatou’s lemma in / dimensions; see
Hildenbrand {10, p. 69]). We need to show: (i) if p € 4°, then a(t) € ¢(=,,
w;,p) for ae. tel; (i) if pedd there is I' CJ such that A(I") > 0 and
la,(¢)| — oo for t e I’ (this is easily seen to imply | z, | — o).

Suppose first that p* = 0. Since lim p,, [w >0 there is I'C 7 and € > 0
such that A(Z") > 0 and lim p,w, > e for € I". Let t € I’ and a € Ls({a,(t)}).
Then ¢b >, a for some real ¢ >0, but &pb =0 << e < p,a,(¢) for n suffi-
ciently large, so, by continuity, @ =, &b, a contradiction. Hence no such g
cxists, i.e., | a,(t)ll — oo forall re I,

From now on we assume p' > 0. Pick I’ C [ as follows: if hypothesis
(ii) in the statement of Theorem 1 holds, put I’ = I; if hypothesis {i) hoids,
put ' = Ii{t : for some x € Z'7, p(x,0) = pw(t)}. Then XI') = 1; this is
obviously true in the first case, to see it in the second case note that Zi-lis a
countable set and hypothesis (i) implies, letting p' = (p%,..., p'b), At :
wlt) = (1/pY) p(x — y)} = Oforall x, ye Z-1.

Let €]’ and aeLs({a,()}); if pa’ < pwl(t), then a >, a by the usual
argument: if pa’ = pw(t), ’* = 0, and hypothesis (i) holds, then a >, a'; if
hypothesis (i) holds, then 4" = 0 is impossible because ¢ € [’; let pa’ = pw(¢)
and a” > 0, then there is a,” — @’ such that p,a,” < p,a,(t) and so, ¢ >, @'
In conclusion, if 7€ I’ and a € Ls({a,(1)}), then a € ¢(=;, w(f), p). If p/ = 0,
J 5 I, this is compatible with the monotonicity of 2, only if Ls({a(1)}) = ©.
ie., |'a,(f)|— oo. If pede, then we have a(?) e ¢(=,, w(?),p) for aec.
¢t = I and the proof is finished.

Proof of Theorem 2

The proof of this theorem is routine and we will skip it; everything is
analogous to the situation with consumption set R.’ and the proof of
Hildenbrand [11, Theorem 3, p. 159] applies almost verbatim.

Proof of Theorem 3

Let v € & be given. We are only interested in finding a dense set of econo-
mies satisfying certain properties, so we can alter slightly the economy » to
suit our purposes. In this proof we shall repeatedly do so without always
explicitly replacing symbols; that the given v has possibly (and legitimately)
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(i) Every p € I1(v) is an essential solution of 0 € F,(p).
(iii) For every p € I1(v) there is a unique = such that (p, 7) € W(v).

Given Theorem 2 and the continuity properties of F it is immediate that
every regular » is a continuity point of .

THEOREM 3. There is a dense set 6* C & of regular economies.

Let p be a metric for the weak convergence on .#(%' x £2 x £2). We have
a corollary to Theorem 3 (which, however, is weaker than the theorem and
could be proved directly somewhat more easily).

COROLLARY. [Let € > 0; then there is an open, dense set O C & such that if
v € O there is a neighborhood V C 0 of v and a finite number of pairwise disjoint
open sets B; C R} X M(P' x 82 x Q) of radius < e with the property that,
for every v' € V, W(v") C J; B; and W(v') N B; # & for all i.

Remark 4. Via approximation arguments there is no difficulty in using
Theorem 3 to prove an analogous result for a model with perfectly divisible
commuodities.

1

Proof of Theorem | Let v be given.

The proof follows familiar paths; in particular, it is convenient to formulate
the problem in Aumann’s [1] representation form. Let [ = [0, 1] and A
denote Lebesgue measure. Take a (Borel) measurable map e: /1 — & X 2
such that v = A< e (such a map exists, Hildenbrand [11, (37), p. 50]);
denote e(t) = (2, w,). In this section it will be convenient to let p be a
generic element of 4, the closed unit simplex in R*; 4° will be the open
simplex.

For every (>, w)e? X 2 and pedlet (=, w,p) ={acd: pa < pw
and @ > o' whenever pa’ < pw} — {w}. Hildenbrand’s proof of Proposition 2
[11, p. 102] applies verbatim to establish the measurability of Graph g.
Hence, for every p € 4, the correspondence 7+ (=, , @, , p) has, likewise, a
measurable graph (Hildenbrand [11, p. 54]) and so, we can define the mean
excess demand correspondence ®: 4° — R! by D(p) = [ (=, wl(t), p) dt;
& is compact, convex-valued (Hildenbrand [11, Theorem 3, p. 62]). We will
show that, under any of the two conditions in the statement of Theorem 1, @
is upper hemicontinuous and p, — p € @4 implies inf{|| a || : @ € P(p,)} —0.
This will yield the theorem; indeed, it is well known that the above properties,
together with the uniform boundedness below of @ and p@(p) = 0 for all
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we can define the degree of f€ #, denoted deg f; to be the degree of any
function g€ % homotopic to f. The basic fact, straightforwardly derived
from the corresponding result for continuous (or smooth) functions, is:
J€F has degree zero if and only if it can be extended to a convex, compact-
valued, u.h.c. correspondence f: B — S (see Guillemin and Pollack [8, p. 145]).

Let F: ¥V — R", V' C R" open, be a convex, compact-valued, u.h.c. corres-
pondence. Suppose 0 € F(x); we say that x is an essential solution to the
equation 0 € F(x) if for every e > Othereis 0 < 8 << esuch that 0 ¢ F(S,;) and
the convex, compact-valued, uw.h.c. correspondence F: S,;— S defined by
F(y) = {z/| z|: ze F(p)} has degree different from zero.

Denote £ ={xe V' |0eF(x)} and suppose that every x € E is essential.
Let F,,: ¥ —> R" be a sequence of compact, convex-valued, u.h.c. maps such
that Ls Graph (F,) C Graph(F)® and E,CKCV, where E, ={xe}:
0 € F,(x)} and K is an a priori given compact set. Then E, converges to E in
the Hausdorfl metric for the nonempty, compact subsets of R”, i.e., if n is
large E, and E appear alike. It is obvious that Zs(E,) C E; to show E € Li(E,),
let x e E, ¢ > 0 and take 6 > 0 as in the definition of essential solution. Then
F:S,; — S has degree = 0 and if 7 is large, 0 ¢ F,,(S,5); in fact, giving to F,:
Sys— S the obvious meaning, d(F,F,) — 0. Therefore, if # is sufficiently
large, F and F, are homotopic and so, deg(F,) = 0. If 0 ¢ F,(B,), then £,
could be extended to B,; which is not the case; hence E, N B,. = 2.

We see then that the definition of essential solution corresponds to the
idea of the solution being stable under perturbations of the correspondence
F. The converse is, incidentally, also true: if a solution is not essential, then it
can be eliminated by an arbitrarily small perturbation of F. The formulation
via the degree has the advantage that it is given in terms of F only and does
not need, in consequence, the explicit consideration of an ambient space of
correspondences.

Now we apply the ideas and concepts of the last six paragraphs to our
economic problem.

Define the mean excess demand correspondence F: & x R} - R\ by
F(v,p) = [ ¢(Z, , p) dv where ¢(>, w,p) = {xe R-1: for some se R, ,
p¥(x, 5) < p*w and (x, s) = a whenever p*a < p*w} — {(wl,..., ' D)}. As in
Hildenbrand [11, 1.2, 1.3, Chap. 1] one verifies that F is well defined, non-
empty, compact, convex-valued, and u.h.c. Moreover, p € IT() if and only if
0 € F(v, p). The correspondence F(v, -): R} — R is denoted F, .

In the present context, we define an economy v & & to be regular if the
following three conditions are satisfied:

(i) Tl(p)is a finite set.

* For definitions see Hildenbrand [11, p. 15]. One writes « & Ls(A4,) if every neighborhood
of u intersects infinitely many of the A4, .



448 ANDREU MAS-COLELL

Let (7 x 2 x ) be the set of probability measures on 2’ X Q x Q
with the weak convergence topology. Then v~ W(v) and v+ II(v) define
correspondences W : & — (P x 2 x ), II: & — R.?, respectively.

The following theorem is of a familiar variety and it is routinely proved
using the techniques in Hildenbrand’s book [11].

THEOREM 2. The correspondences W and 11 are compact valued and upper
-1

hemicontinuous. Moreover, I1(v) C R'} for every ve &.

Consider an economy v with a finite support (i.c., the weight of the distribu-
tion is concentrated in a finite number of points) and such that for some
p €11(v) and a € supp(v) there is a unique =, maximizer in the budget set
determined by p. Tt is easily seen (i) every p’ in a neighborhood of p is an
equilibrium price; (ii) such economies lie dense in &. Hence, there is a dense
set of economies having a continuum of price equilibria. Observe, inciden-
tally, that the argument leading to this conclusion remains valid under any
“regularity” condition on preferences one may wish to impose.

Is there a dense set of economies having a finite set of equilibria ? We shall
see the answer 1s ves, but this is not by itself a vety interesting property; what
one wants (for, say, estimation or prediction purposes) is that those equilibria
be “essential,” i.e., that they do not disappear by performing an arbitrarily
small perturbation of the economy. Also, if the existence of a dense set of
economies having a finite number of equilibria each one of them “essential”
can be established, then some reasonable “open and dense” properties can
be stated.

In order to arrive at a concept of essential price equilibrium we need to
gather some mathematical definitions and results,

Let S, B C R” be, respectively, the unit sphere and the unit ball; in general,
the e sphere or ball centered at x € R* will be denoted S, , B, (S., B. for
x == 0). A subset of a sphere in R" will be called convex if it is the inter-
section of the sphere with a pointed convex cone in R*. We concern ourselves
with the space % of convex, compact-valued, upper hemicontinuous (u.h.c.)
correspondences f: § — S.

Two f, geF are homotopic if there is a convex, compact-valued w.h.c.
correspondence H:S x [0,1]— S such that H(-,0)=f H(,1)=g.
Homotopy is an equivalence relation.

A semidistance in % is defined by letting d(f. g) == inf{e > 0: Graph(g) C
Graph(f) + B.}. It is well known that for every fe % and € > 0O there is a
continuous (or smooth) function g € % such that d(f, g) << € (see Cellina [3]);
it is also immediately verified if e .% and € > 0 is small enough, then fis
homotopic to any g € % with d(f, g) < . Since the degree of a continuous
function g: S— S is a homotopy invariant (for the definition of the degree
and its basic properties see, for example, Guillemin and Pollack [8, Chap. 3])
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commodity 1 is zero but as soon as p* = p? every consumer switches to a
demand of 2 units of that commodity. Condition (i) avoids this problem
because if it holds, consumers do not switch their demands all at once (i.e.,
at the same price) but rather only a negligible fraction of them switches at
every single price; the net effect is that mean excess demand behaves in a
continuous fashion. That diversification of economic agents characteristics
will induce regularity in aggregate behavior is a straightforward and old
idea;! it is, in fact, rather surprising that (thanks to “convexifying” results
such as the Shapley—Folkman and Lyapunov theorems) equilibrium theory
has managed to do without. It would appear, however, that if discrete com-
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Figure 2

modities are brought into the picture, then diversification is an essential
component of a reasonable theory; it is at least the most natural way to deal
with the existence problem.

3. The Equilibrium Correspondence; Determinateness of Equilibria

In this section we shall go beyond the existence question and ask how
determipate equilibria are. For the sake of simplicity we shall only deal with
economies whose consumers have characteristics in ' x Q.

Let & be the space of economies v such that »(#" x Q) = 1; & will be
topologized in the usual manuer, i.e., v® — » if v* converges to v weakly and
[idvy" — [idvg(see Hildenbrand [11]).

! See, for example, Walras [16, p. 581
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Remark 1. We refer to Hildenbrand [11] for the ideas underlying the
definitions of economies and equilibrium; to identify an economy with a
distribution is tantamount to postulate from the beginning an infinity of
traders.

Remark 2. The discrete commodity model we use has already appeared
in Mc Kenzie [12], Henry [10] and Broome [2]. In contrast to E. Dierker [5],
they assume the existence of one (or several) perfectly divisible commodity;
it seems to us that this is indeed the minimal requirement for generalizing
the usual (perfectly divisible commodities) equilibrium theory to a discrete
commodity context without losing any of its substantial results. It goes
without saying that “perfectly divisible” is an idealization for almost divisible.

Assumption (1) is the standard (and obviously very strong) strict monoto-
nicity assumption. It is convenient and can be weakened in many familiar
direction. Assumption (2) is peculiar to the discrete commodities model (it
can be found in Broome [2]); it is not very strong, any continuous
preference relation can be approximated in closed convergence by one
satisfying the condition.

The assumption defining & (i.e., that some amount of the divisible
commodity is indispensable) is very strong and shall not be postulated in our
main existence theorem; it can be found in Henry [10]; it is, however, a very
convenient assumption and once the point of its dispensability is made we
will use it freely.

Remark 3. The hypothesis that there is only one divisible commodity is
made only for notational simplicity.

2. The Existence Problem

Given an economy v let », be the marginal distribution on [0, ), i.e., the
distribution of divisible commodity.

THEOREM 1. Given an economy v there is an equilibrium (p, 7) for v if either
one of the following two conditions holds:

(i) w, is absolutely continuous with respect to Lebesgue measure;
(i) »(# x 2) =1

The main result is existence under condition (i). The role of this condition
can be gauged from the following example: let the economy give weight 1 to
the endowments—preferences combination depicted in Fig. 2; it is then easy
to check that the economy has no equilibrium (mean excess demand is
bounded away from zero). The problem is that the mean excess demand
correspondence does not have a closed graph, if p! > p* the demand of
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(1) leta ,a,e2;if @' >0 and a, > a,, a, # a,, then a, > a;;
(2) forevery a € 2 there is a real A > 0 such that Ab > a.

Denote by Z the space of preference relations satisfying (1) and (2); let
P ={ReZ:if, fora,,a el a’ = 0and a,' > 0, then a, > a,}. Figure |
pictures the indifference map of a preference relation in Z.

The set # is endowed with the topology of closed convergence. An economy
is defined to be a Borel probability measure v on & x £2 such that, denoting
by vp the marginal distribution of v on £2 and i: 2 — £2 the identity map, one
has 0 < [idvg < c0.

We fix the price of the /th commodity to be 1 and define a price system as
a vector in R%™. For every pe R.? let p* = (p, 1) € R* and denote E, =
{(Z,w,a)e? x 2 x Q:p*a < p*w and a = a' for every a' € such
that p*a’ < p*w}.

FiGure 1

A pair (p, 7), where pe R * and 7 is a (Borel) probability measure on
P x 0 x 0, 1is an equilibrium for the economy v (in the sense introduced in
Hart et al. [9)), if, letting 7,, 7; be the marginal distribution of = on the
second and third factors:

(i) the marginal of r on 2 x 2 equals v,
() [idr < [idr,,
@) 7(E,) = 1.

Denote by W(v) the set of equilibrium pairs for v and let [1(v) be the set of
equilibrium prices, i.e., the projection of W(v) on the price factor R ™.
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obtain an exact result we make use of an hypothesis postulating that the
distribution of consumers according to the amount of divisible commodity
they own does not give a positive weight to any particular amount (i.e., the
distribution is “spread™). This is a natural enough assumption but its need
had not previously been felt in existence of equilibrium analysis.

The set of economies can be made into a topological space in a by now
familiar manner (Hildenbrand [11]). Associating to every economy the set
of its equilibrium prices and distributions a correspondence is defined.
Ideally, one would like that the correspondence assigns to every economy a
finite set (or even a singleton!) which, moreover, does not abruptly vary
with perturbations of the economy. It is clear that this is too much to wish
for, but in the divisible commodities case with convex, smooth preferences
(and appropriate C* topologies and boundary conditions) it can be shown
that the above determinateness of equilibrium property does, indeed, hold in
an open, dense set of economies (for the finite number of consumers case see
the seminal paper of Debreu [4], for the continuum see H. Dierker [6]); with
a set of weakening qualifications the validity of a similar result can be
extended to the whole space of economies with smooth (not necessarily
convex) preferences (see Mas-Colell [14]).

In the present indivisible commodities context there is no room for the
exploitation of smoothess hypothesis and so we will have to settle for ob-
taining (Theorem 3) the strongest determinateness of equilibrium property
one can hope for in a framework of continuity hypothesis, i.e., the existence
of a dense set of economies having a flnite number of equilibria each one of
which is “stable” (i.e., not very sensitive) under perturbations of the economy
(for the divisible commodities, convex preferences case see H. Dierker [7]);
some relevant “open and dense” statements can be derived from this. We
may mention that proving the indivisibility model has this property turns
out to be a somewhat delicate matter. Precise definitions, discussion, and
more details will be given in Part I.

Part I contains the model and statement of theorems; Part II, the proofs.

1. The Model
Let Z be the nonnegative integers. The consumption set is Q2 = Z'* x
[0, o0); a commodity bundle will be denoted a = (x, 5). Let & = (0,..., 0, 1).
A preference relation = C Q2 x Q is a complete, transitive presorder; >
is the partial order induced from z in the usual manner. We will always
assume that preference relations are continuous (i.e., closed) and satisfy the
following assumptions:
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In this paper we study (pure exchange) economies where some of the
commodities traded are available only in indivisible units which are large
from the standpoint of the individual consumer but small {in fact, negligible}
relative o the size of the economy. The objective is to formulate models and
give conditions guaranteeing that the main results of the price equilibrium
theory with divisible commodities and convex preferences remain valid.
Previous references are Henry [10], Broome [2], and E. Dierker {5].

The original motivation for this work comes from Mas-Colell [13], where
it turned out that, for the particular aim there pursued, an indivisible com-
modities model was a more natural and conveneient starting point than the
familiar divisible commodities one.

There are close relations between the situation here and the divisible
commodities, nonconvex preferences theory developed by Starr [15], Aumann
[1], Hildenbrand [11], and others. The indivisible commaodities case, however,
is not subsumed by the latter; one can no longer assume, for example, that
consumption sets are convex.

As with the previous references we concern ourselves only with economies
having a large number of traders. In fact, we adopt the Aumann idealization
of a continuum of traders which we model following Hildenbrand {11]. In
the assumptions referring to consumption sets and preferences we stay close
to Henry [4] and Broome [2]. In particular, we postulate that some commo-
dities are perfectly divisible (for simplicity, just one) and we argue that this
hypothesis, besides being reasonable, is a sine qua non: see Mc Kenzie [12].

The two specific problems considered are the existence and the deter-
minateness of equilibrium prices and allocations, The noticn of equilibrium
we use is the (distribution form) one recently introduced in Hart et o/ [9] and
Hildenbrand [11].

For sequences of increasingly large finite numbers of traders economies
the problem of existence of “approximate™ equilibria has been studied by
Broome [2] and E. Dierker [5]. Our line of attack is slightly different: we
assume from the beginning that there is a continuum of traders and in order
to overcome the (continuity) problems peculiar to the indivisibilities case and

443
Copyright © 1977 by Academic Press, Inc.
Al rights of reproduction in any form reserved. TSSN 0022-053%



